
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2205908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i68

Video Conferencing as a Web Application using

WebRTC

Achyut Ajith Kumar
School of Engineering

Department of CSE

Dayananda Sagar University

Bangalore, India

achyut.ajithk@gmail.com

Arun Kumar
School of Engineering

Department of CSE

Dayananda Sagar University

Bangalore, India

arunkumar.aqm@gmail.com

Akhil T Sam
School of Engineering

Department of CSE

Dayananda Sagar University

Bangalore, India

fromakhil@gmail.com

Dr. Mouleeswaran SK
Associate professor

Department of CSE

Dayananda Sagar University

Bangalore, India

mouleeswaran-cse@dsu.edu.in

Abstract—People need to communicate with each other for
different reasons like business, personal etc. An in-person meeting
may not be possible depending on the situation and this means
more money and logistics. The global pandemic has also caused
an increase in demand for remote/long distance communication.
We are implementing a video conferencing web application to
tackle these problems.

We plan on implementing a video conferencing application
which lets users to join/host a video call between two or
more participants on the same meeting webpage. The backend
framework is built using WebRTC. WebRTC is a free, open
framework that uses simple Javascript APIs to provide Real-Time
Communications (RTC) capabilities to web browsers. WebRTC
aims at providing high quality real time communication applica-
tions to your webpage. Connections from one browser to another
can be made easily, which is dynamically possible through the real
time web. This allows our web application to provide different
features like text chat, file sharing, screen sharing, audio calls,
video chat and more. The front end is designed using ReactJS.
We use firebase as our signalling server.

Index Terms—WebRTC, React, Firebase, Video conferencing,
file sharing, call, video, audio

I. INTRODUCTION

Video conferencing is a technology which allows users

to host or join a meeting without having to physically be

in the same place. It is a tool that is used for different

communication platforms. These platforms may provide

features like screensharing, recording, text message etc.

Owing to the increase in use of technology and the Covid-19

pandemic, video conferencing is transforming our means of

communication with each other.

Video conferencing must be designed to be easy to learn

and use, especially for individuals without much experience

with technology. Users must be able to host/join a meeting,

invite participants with ease and it must be doable from

any media device. The technology should also be accessible

directly from a browser without the need for any installation

or setup. Security and privacy is important, especially to

reduce risks due to humans.

WebRTC is the framework picked for this application

and can provide a video conferencing web application that

is secure, convenient and compatible with browsers for all

device platforms.

II. WORKING OF WEBRTC

WebRTC is a protocol which allows us to do bi-directional,

real-time, peer-to-peer, media exchange between 2 devices.

Real-time means there is no lag. Peer-to-peer means 2 devices

connected to each other directly. Media exchange is where 2

devices can send/receive video and audio to each other.

Each client has to go through these steps for successful

WebRTC communication.

A. Signalling

Before 2 devices can start a P2P communication, they

need to know about each other, this is done with the help of

Signalling. Both devices agree upon a common central server

through which they can talk and exchange information about

each other. This server is called signalling server. There is no

standard for connecting to Signalling server, so devices can

use protocols like HTTP, REST, websockets, MQTT etc.. to

connect to the server.

Devices exchange information like:

1. IPs and Ports that the Device is reachable on (candidates).

2. How many audio and video tracks the device wishes to

send.

3. What audio and video codecs each device supports.

4. Values used for securing connection (certificate fingerprint).

B. Connecting

Once 2 devices know each others details, they try to find

the best possible way to connect to each other using ICE

protocol. ICE (Interactive Connectivity Establishment) is a

protocol which is used to find the best ways to connect to

a device called ICE candidate. ICE uses STUN or TURN

http://www.jetir.org/
mailto:achyut.ajithk@gmail.com
mailto:achyut.ajithk@gmail.com
mailto:arunkumar.aqm@gmail.com
mailto:arunkumar.aqm@gmail.com
mailto:fromakhil@gmail.com
mailto:mouleeswaran-cse@dsu.edu.in
mailto:mouleeswaran-cse@dsu.edu.in

© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2205908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i69

servers to find the best possible way to connect. STUN server

is a simple server, which on request provides the public IP

and port of the connecting device. TURN server is a Relay

server, i.e it acts as a central server through which the data

passes through. While connecting the 2 devices check if the

ICE candidate is valid.

C. Securing

Once devices know how to connect to each other, they

secure it using 2 protocols DTLS and SRTP. DTLS (Datagram

Transport Layer Security) which is just TLS over UDP. The

TLS protocol provides HTTPS security. SRTP (Secure Real-

time Transport Protocol) is RTP with packets encrypted.

Devices then do a handshake using DTLS protocol. They

check if the certificates match the fingerprint passed in the

SDP during signaling. For Audio/Video transmission devices

use the same certificates to encrypt the data and send it via

RTP.

D. Communicating

Two Devices can communicate 2 things between each

other:

1: Media : Audio, Video.

2: Data Messages (simple string messages)

WebRTC specifies 2 different protocols for each of the

above type. For Media, devices use RTP (Real-time Transport

Protocol) encrypted with SRTP. For Data, devices use the

SCTP (Stream Control Transmission Protocol)

III. LITERATURE SURVEY

[1] In order to make the screen sharing across platforms,

a scheme is based on the WebRTC technology under the

Browser/Server framework. The system architecture is

described in detail in the paper. The proposed WebRTC-

based scheme brings a cross-platform, cross-device and

multifunctional user experience when compared to other

projects.

[2] This paper implements an application compatible with

Mozilla firefox. The application is multipoint, meaning every

user is connected to each other. The same video stream is

displayed to all the users.

[3] This paper helps us understand the system architecture

of WebRTC. Developers can build an application with real

time video communication solution that is secure and does

not require any installation or external plug-ins.

[4] This paper tries to implement live video streaming

application using WebRTC as well as its limitations.

Implementation shows that peer-to-peer streaming is currently

possible for more complex algorithms and larger sets of

clients. However, the experiments and implementation have

also shown, that with the current limitations of WebRTC such

an implementation is currently not practical.

[5] This article uses WebRTC which helped implement a

secure and high data transmission application. It provides real

time communication amongst users as peer to peer or peer to

group connection. Anyone can host/join their own webpage

which enables users with features such as text, video, voice

chat, file sharing etc.

[6] The application presented in this paper had the potential

to smoothly integrate itself into other projects. This means

there is no need for any external plug-ins and significant cut

down in costs .

[7] The architecture and technology of WebRTC can be

well understood from this paper. WebRTC does not offer a

signalling solution, so they used WebSocket as signalling

protocol to send the required signalling information.

[8] This paper draws attention to use of APIs and how they

can help build your application with WebRTC. It also gives us

insight about how your application can run with fairly good

latency even with limited bandwidth.

IV. THE TECHNOLOGY OF WEBRTC

Fig. 1. The technology structure of WebRTC (Huaying Xue, 2015, p.1)

[1] helps us understand the architecture and technology of

WebRTC. The architecture of WebRTC is shown in Figure

1. The API layer for Web developers, the API layer for

browser developers, and the custom service layer for browser

developers make up WebRTC. GetUserMedia API, PeerCon-

nection API, and DataChannel API are the three basic APIs

provided by the top API layer for Web developers. WebRTC is

illustrated in Figure 2. Figure 2 shows two WebRTC-enabled

http://www.jetir.org/

© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2205908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i70

browsers, a signalling server, and a STUN/TURN server. It

shows a basic WebRTC application architectural concept in

which browsers serve as clients, the signalling server parses

signal messages before the peer-to-peer connection is com-

pleted, and the STUN/TURN server punches holes.

Fig. 2. The principle of the WebRTC technology (Huaying Xue, 2015, p.2)

V. REACTJS

React was used to create our front end. React makes creating

interactive UIs a breeze. Create basic views for each state of

your project, and React will update and render the appropriate

components as your data changes. ReactJS is a JavaScript

library for creating reusable user interface components that

is declarative, efficient, and versatile. It’s an open-source,

component-based front-end library that’s just responsible for

the application’s view layer.

VI. FIREBASE

A Firebase database server is used as the signalling server.

A Firebase account was created and a new project was set

up. In the code, we import the Firebase Javascript library and

use the credentials provided to your Firebase account.

The idea to use Firebase as the signalling server was taken

from [9]

The Firebase Real-Time Database is a database stored in

the cloud. Data is saved in JSON format and synchronised in

real time across all connected clients.

VII. METHODOLOGY

A. Connect users

For the two users to connect, the simplest option is that

both the users visit the same website. This page can then

identify each browser and connect both of them to a shared

signaling server, using something like the WebSocket API.

B. Start signals/Signalling

WebRTC does not specify how signalling should be done.

Signalling is any form of communication that helps the 2

browsers establish and control their WebRTC communication.

May be done using:

- a combination of XHR and the Google AppEngine

Channel API

- XHR polling

- Server-Sent Events

- WebSockets

C. Find Candidates/ICE Framework

The next step is for the two browsers to exchange

information about their networks, and how they can be

contacted. This process is commonly described as ”finding

candidates”, and at the end each browser should be mapped

to a directly accessible network interface and port. Each

browser is likely to be sitting behind a router that may be

using Network Address Translation (NAT) to connect the

local network to the internet. Their routers may also impose

firewall restrictions that block certain ports and incoming

connections. Finding a way to connect through these types of

routers is commonly known as NAT Traversal.

D. What is NAT?

NAT solves the problem of scarcity of IP addresses.The

basic idea behind NAT is for the ISP to assign each home or

business a single IP address (or at most, a small number of

them) for Internet traffic.Within the customer network,every

computer gets aunique IP address,which is used for routing

intramural traffic.However,just before a packet exits the

customer network and goes to the ISP, an address translation

from the unique internal IP address to the shared public IP

address takes place.

STUN (Session Traversal Utilities for NAT) helps in NAT

traversal. A STUN server identifies how you can be contacted

from the public internet and then returns this information in a

useful form. There are a range of people that provide public

STUN servers.

If the STUN server cannot find a way to connect to

your browser from the public internet, you are left with

no other option than to fall back to using a solution that

relays your media, such as a Traversal Using Relay NAT

(TURN) server. This effectively takes you back to a non peer-

to-peer architecture, but in some cases, where you are inside a

particularly strict private network, this may be your only

option.

Within WebRTC, this whole process is usually bound

into a single Interactive Connectivity Establishment (ICE)

framework that handles connecting to a STUN server and

http://www.jetir.org/

© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2205908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i71

then falling back to a TURN server where required.

E. Negotiate Media Sessions

Now that both the browsers know how to talk to each

other, they must also agree on the type and format of media

(for example, audio and video) they will exchange including

codec, resolution, bitrate, and so on. This is usually negotiated

using an offer/answer based model, built upon the Session

Description Protocol (SDP).

F. Start RTCPeerConnection streams

Once this has all been completed, the browsers can finally

start streaming media to each other, either directly through

their peer-to-peer connections or via any media relay gateway

they have fallen back to using.

G. Peer to Peer Communication

Multiple computers come together and pool their resources

to form a content distribution system. These computers are

peers. There is no dedicated infrastructure like in a client-

server architecture; no central point of control. P2P networks

are self-scaling and faster.

VIII. MAIN FUNCTION MODULES

A. Video chatting module

To perform video chatting, each client must use the Ge-

tUserMedia API to retrieve the local video and audio streams.

The streams should then be added to the local PeerConnection

object, and the incoming media streams should be attached to

the remote PeerConnection object. As a result, we can have

face-to-face conversations with our friends.

B. Data communication module

Between the two peers, a data channel must be introduced

to the existing media channel. We create a new related object

called ’DataChannel’ and link it to the PeerConnection object

using the DataChannel API. The data channel resembles

the 1M WebSocket channel in appearance. The difference

is that the latter requires the server’s assistance, whilst the

former does not. SCTP is the WebRTC protocol for direct

transmission over the Data Channel.

C. File sharing module

For file sharing, the main idea is to fragment the whole file

data, transmit the small packets via the Data Channel, and

group them together when received. In this module, clients

can work as both a sender and a receiver. First, the sender

uploads the file to the application. The arrayBuffer(uploaded

file) is converted into Base64 encoded string on the sender’s

side. Finally, we convert, the base64 string to a blob object,

which can now be downloaded by the recipient.

Fig. 3. Video communication using WebRTC

IX. PROPOSED DESIGN

The backend contains the underlying working of the

application and the database. This is accessed through the

front end; which is the user interface. Users access the web

application through a browser. Once they are on the webpage

and connected to the same meeting; WebRTC uses its different

APIs to enable real time communication capabilities.

Fig. 4. Flowchart

The flow is fairly simple, users simply choose to join/host

meeting on the landing page. The host sends the meeting id

to the desired participant via other form of communication.

Once the participant enters the correct meeting id, both users

are moved from the Room page to the meeting page. Here,

users can choose to video/audio chat, text chat or screenshare.

Once a user leaves the call, the call ends.

X. RESULTS AND SCREENSHOTS

A project has been successfully implemented, where two

users can join/host a meeting. Here, users can join meeting

http://www.jetir.org/

© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2205908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i72

and can begin to chat. Users can choose to audio/video chat,

text chat or file share.

Fig. 5. Landing page

The landing page lets the user choose to join or host a

meeting.

The join meeting page lets the user join a meeting by

entering the meeting id provided by the host.

Fig. 8. Meeting

page

The meeting page is where the call takes place, once

both users have joined the meeting. Here, users can text

chat, audio/video chat or file share.

CONCLUSION AND FUTURE

SCOPE

This paper illustrates how WebRTC can be used to

enable real time communication capabilities for a web

application. A project has been implemented which

provides a platform where two users can join/host a

meeting on the same webpage. Users can text, audio/video

chat and file share. One can further improve the application

by adding features like screen sharing and a login page for

extra security. Preferences management, background

blurring, support for many participants is also possible.

Fig. 6. Host meeting page

The host meeting page allows the user to host a meeting,

by entering the name the user wants to be displayed in the

meeting.

Fig. 7. Join meeting page

REFERENCES

[1] Huaying Xue, Yuan Zhang(2016), “A WebRTC-Based

Video Conferencing System with Screen Sharing”, IEEE Con-

ference on Computer and Communication.

[2] George Suciu, Stefan Stefanescu, Cristain Beceanu, Mar-

ian Ceaparu(2020), “WebRTC role in real-time communication

and video conferencing”, IEEE Global IoT Summit.

[3] EA Emmanuel, BD Dirting(2017), “A peer-to-peer ar-

chitecture for real-time communication using Webrtc”, Journal

of Multidisciplinary Engineering Science Studies.

[4] Florian Rhinow, Pablo Porto Veloso, Carlos Puyelo,

Stephen Barrett, Eamonn O Nuallain(2014), “P2P live video

streaming in WebRTC” , World Congress on Computer Ap-

plications and Information Systems (WCCAIS).

[5] Zinah Nayyef, Sarah Faris Amer(2019), “Peer to Peer

Multimedia Real-Time Communication System based on We-

bRTC Technology”, International Journal for the History of

Engineering and Technology.

[6] Phuc Truong(2021),”Video Conference Room Imple-

mentation with WebRTC and React”

[7] Cui Jian,Zhuying Lin(2016) ”Research and Implementa-

tion of WebRTC Signaling via WebSocket-based for Real-time

Multimedia Communications”

http://www.jetir.org/

© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR2205908 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i73

[8] Kushtrim Pacaj, Kujtim Hyseni, Donika Sfishta(2020)

”Peer to Peer Audio and Video Communication using We-

bRTC”

[9] Rob Manson(2013), ”Getting Started with WebRTC”,

Birmingham: Packt.

[10] David Marcus,2017, Insanely Simple WebRTC

Video Chat Using Firebase (With Codepen Demo),

Australian Museum, accessed 10 September 2021,

(https://websitebeaver.com/insanely-simple-webrtc-video-

chat-using-firebase-with-codepen-demo)

http://www.jetir.org/

